TWO-DIMENSIONAL SPREADING OF A CLOUD
OF CONDUCTING GAS IN A MAGNETIC FIELD
SELF-SIMILAR SOLUTION

V. I. Yakovlev UDC 538.4

A self-similar solution of the problem on the spreading in a magnetic field of a cloud of
conducting gas, having the shape of a cylinder of noncircular cross section, is constructed,
The cylindrical surface of the gas is restrained by a nonconducting sheath that spreads ac-
cording to a prescribed law, The shape of the transverse cross section of the cylindrical
cloud is determined from the solution. Cross sections obtained for a concrete case are
represented in graphic form.

The character of the flows in many magnetohydrodynamic devices makes it necessary to investigate
-two-dimensional nonsteady metions in magnetogasdynamics. A great many papers are devoted to theoret-
ical discussions of similar problems. Under the assumption that the magnetic Reynolds number Ry, and
the magnetohydrodynamic interaction parameter are small,studies have been made of the eddy currents
generated in the gas behind the shock wave in the region of inhomogeneity of the external magnetic field
and of their influence on the propagation speed of the shock wave [1] and on the braking of a plasma cloud
in a channel [2]. For Ry, =« the behavior of a two-dimensional Z-pinch with the formation of a plasma
focus has been studied in [3] and the parameters of an axial plasma jet were obtained.

In two-dimensional, as in one-dimensional, problems,it is important to consider finite values of the
number Ry, since in the first place this number is by no means small in certain experimental apparatus
[4], and secondly, as has been shown in [5], even for flows having an R that is initially small,the develop-
ment of small but finite perturbations in the conductivity can lead to a substantial rearrangement of the
flow with the formation of high-temperature layers, and this results in an increase in the effective value of
the magnetic Reynolds number, while the induced magnetic fields become sizeable,

In the general case such problems can obviously be investigated only by the application of numerical
methods, but at the same time the need for exact solutions remains.

One of the best-known methods of obtaining exact solutions is the method of self-similar solutions.
Usually one considers problems in whose original formulation all unknown functions depend on only two
independent variables, and the introduction of a self—-sxmxlar variable reduces the problem to the integration
of ordinary differential equations {6, 7).

In the case of nonsteady two-dimensional problems of magnetogasdynamics with three independent
variables the possibility of obtaining an exact solution of the self-similar problem is not evident; therefore
the construction of such a solution is of interest.

In the present paper, we give an example of a self-similar solution of the problem for the case of
two-dimensional spreading of a cloud of conducting gas, contained in a nonconducting, mobile sheath,

Suppose that we have a two~dimensional cloud of conducting gas in the shape of a cylinder with gen-
erators parallel to the z axis, whose lateral surface is restrained by a nonconducting sheath. The cross
section of the cylinder in a plane z = const is some closed curve whose shape is to be found frem the solu-
tion, The entire system is situated in an external magnetic field that has only a z-component,
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At some instant let the sheath start to expand, remaining geo~

D(F) metrically similar in the shape of its cross section, while the strength
‘ of the external magnetic field begins to diminish, The displacement
of the sheath results in motion of the gas, in which closed electric
l currents, lying in the planes z =const, are induced. The magnetic
A EN__ATF field of the currents will be combined with the external magnetic field

and will change it inside the cloud. The conduction currents will have
no effect on the field outside the cloud., The influence of displacement
currents on the magnetic field outside the cloud is also negligibly
small (since the velocity with which the cloud spreads is small in comparison with the speed of
light).

Fig. 1

After a certain time the characteristic dimension d of the cloud becomes substantially larger than
the initial dimension d, while the strength H of the external field becomes smaller than H,. At this time
the solution ceases to depend on Dy, H, and on the initial conditions in the cloud (withthe exception of a small
neighborhood of the origin}. The solution that is obtained after the self-similar regime has become es-
tablished will be constructed in this paper.

Using 2 cylindrical coordinate system (r, ¢, z), we have 8/8z =0 for the case under consideration.
Let r, be the r-coordinate of a boundary point of the cloud; according to our stipulation r, =1, (g, t).

We seek a solution with the velocity field
v=uo(rt)e, v(rt)=rf"{)f) 1)
and with a magentic field H=H (r, ¢, tle,.

A motion with the velocity field (1) ensures the geometrical similarity of the boundary of the cloud
{(which is necessary for a self-similar process) at any time t.

The equations of magnetogasdynamics with (1) taken into account have the form
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where v, is the magnetic viscosity, o is the conductivity, and c is the speed of light,

Equations (2) are written under the assumption that the medium is a perfect gas with constant specific
heats, that viscosity and heat conductivity are absent, and that the electrical conductivity is related to the
pressure P and the density p through a power-law dependence. In the energy equation Joule heat is not
taken into consideration,

Taking the transverse dimension of the cloud to be equal to zero at the instant t =0, we shall assume
that the law by which the sheath is displaced is given in the form

re = 1P (9) 3)
while the strength of the external magnetic field varies according to the law
Hy () = Ate. @

Here ¥ {p) is a dimension}ess periodic function oftheangle ¢, I and A to be determined, [I]=cm - sec™5,
and [A]=g!/2.ecm™1/?-sec=(1+*®) o and g are dimensionless constants. Moreover, let M, be the mass gas
occupying a unit length of the cylindrical cloud, [Myl=g- em™!, Thus, according to [6], the determining
parameters of the problem are

rog, t, A AnQ/ct 1 My ([4nQ/c?] =g~ (1™ om M2 . sec B

Fora=—1, 8 ==(2n+1)/2(m=1) the problem is self-similar, At the same time, from the parameters r, t,
A, 47Q/c%, 1, M, one can form the single dimensionless quantity

E= ri-igen+1ie(m=-1) (5)
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which, according to (3), assumes the following value at the outer boundary of the cloud

B =¥ (9) (6)
The desired solution will have the form
vir,t) = — 7%*‘_-__11_)—:_ = _22("7’*':11_)1;—(2n+1)/2(m—1)~1§
H(r,g,t) = VBaAt h(E, @), P(ro,0) = AP, @) X

p(rt) =20, ()= 20 Dy (2)

The velocity v satisfies the required boundary condition
v (r, t) |T=T*(<\°J) = Gr*/ﬁt
and in the expression for the density we omit the dependence on ¢, which is obvious from Eqs, (2).

Insertion of (7) into (2) determines equations for the functions p, (£), h (£, @), p (§, ¢). At the same
time the first of Eqs. (2} is satisfied identically, while the fifth equation of (2) reduces to the relationship

v=—2(m—1)/@n+1) (8)
where vy is the adiabatic exponent.

The second, third, and fourth equations of the system (2) reduce to the following:

eI e @) = (), o () =0 (9)
1 o npom 8 [ pom o] 2—7% (10)
?—8?[ 5 6&] D '&6[1’ 0o “;,,‘J— N, )

1
(N—— 4nQ A (1‘0) )

n addition to Egs. (9), (10), the required solution must satisfy a boundary. condition onthe magnetic
field : '

H(r1 Q, t)/r:r*(:p,!) = H* (t)

which, from the second of (7), with account taken of (4), reduces to the form

b [y (9), o = 8 a)™ (11)
We seek a particular solution of Egs. (9), (10} of the form
h(E @) = R(E)F (), pE ¢ =R (N — F(¢)] 12)
the functions R(£), py(£), F (¢) having to satisfy, according to (9), (10), the equations
Mo -1
(B @) =7 Tt ) | (13)
4 TERQ L1 1 _d_[ @) _2-1 N
ER dE | Rpy™ | (1 — F" | g2R¥p™ F(®) d9 | @ — )" Y
the latter of which is equivalent to the following:
R ) o () — 0, A [ ER® ]
T R A o v aa)
ab t AT F@ 7 a2 (15)
(1 — Fy" TF® dg [ 1—F2)"]_QN. Y

Here g, b are arbitrary constants on which the restriction (17) is imposed, Solutions of Egs. (13),
(14) have the form

My ¥ —1 m 4 n\mAmin)
R(E) — al/‘z(m+n)( oy T TﬁT) - ~1)(m+n) (16)

. Mo Y —14 mAn\"Mmm e o000y /(mny.
0o (E) = arimsn) ( ™ T 1) Er2tmin/man

These solutions satisfy the second equation of (14) ‘when

(m—1) (Bm -+ 2n—1) am)
T

1t should be noted that solutions (16) were obtained under the assumption that m #0, m +n#0. The
case m =0 is rejected because it lacks physical interest; the case m +n=0 is not considered for th_e reason

ab =
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that in this case compatibility of Egs. (13), (14) is achieved
only for n=—1 (i.e., only when the conductivity is inversely
proportional to the temperature), which is also without phys—
ical interest,

With (12), (16) taken into account, the boundary con-
dition (11) assumes the form
m-1);(m Y _ man M, — 1 +- —-m;2(m+n) -,
gD (0 F () = -1 )(‘ZJ\LL«_’:——%> (8m)~ (18)
This is, in fact, used to find £, (), i.e., for the de-
termination of the shape of the transverse cross section of
the cylindrical cloud, after solution of the equation for F(p).

We now turn to Eq. (15). From the form of solution
(12) and the condition (18) it is evident that a solution of this
equation has physical meaning if it is periodic and is re-
stricted between the limits 0 SF =1, The period must coincide
Fig. 4 _ with one of the values 27/i(i=1, 2,3, . . .), where, according to
(18), i determines the number of "lobes" in the cross sec—
tion of the cloud. Denoting by F¢(0 <F;<1) the minimum value of F(p), we can write the initial conditions
for Eq. (15) in the form

F(0) =F, F (0)=0. (19)

The value of F; is determined from the condition that the period of the function F{p) should coincide
with 27/i,

Equation (15) contains two constants, ab and aN, The first of these constants is determined by con-
dition (17), and for the values of m, n chosen below (20) it takes the value ab=35. The second constant aN
is arbitrary, and, as shown below, it satisfies the condition (2—vy)y~1-aN > gb.

The constant gN is related to the magnetic Reynolds number, As there are no length and velocity
scales in the problem under consideration, the number Ry, can be calculated only in terms of the run-
ning parameters (§, ¢, = Q P"(§, ¢, ) o™ (E ¢, &), v (E 8, r (§ t) of some fixed particle, It is found that
for the solution obtained this number does not depend on £, t and is determined only by the parameter ¢
of the particle in question. In fact, insertion of the solutions P, p, v, r into the expression for Ry, leads
to the following result:

Ry = 4 aQP"™vre™® = aN (1 — F3n,

However, it is clear that prescribing oN is to a certain extent equivalent to prescribing the number

Rpy,. '
Introducing the new function

_ e d d_ n d
u(F)—T:FZ)—"’ 2o =F @) 77 =uv{l —F)'—%
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we can integrate Eq, (15) once, with the result

w = 2;* aNJ, (F) — abJ,(F) -+ D

2FdF 2FdF
(=Y 2o -5

where D is an arbitrary integration constant. The integrals J;(F) and J,(F) assume different forms, depend-
ing on the exponent n,

In choosing n it must be kept in mind that the constants v, m, n must satisfy condition (8), which,
though restricting the arbitrariness of these constants, nevertheless leaves the possibility of consider-
ing physically meaningful cases, For example, we can take

Y="%4 m=—=3%, n=1 (20)

With these values of m, n the dependence of the conductivity ¢ on the temperature and pressure o «
V2 p=1/2 describes the actual dependence rather well, Therefore, it is assumed below that n= 1 though the
case n=1 can be investigated in a quite similar way., From n=1 it follows that

w = -(2__?)7—1 aNln (4 — F? —ab(i —-Fz)‘l +D
the constant D being determined from the condition u(Fy) =0, which follows from (19).

As a result we obtained

dr \2
— = F
() o
@ (F) = (1 — F?p {-2—7* aNIn(1 — F?) +ab(l — F2yt — 2 =L aN (4 — F?) —ab(t — FZ)“I} (21)
@ (F))=0
For the periodicity of the function F{p) and a variation between the limits F, <F <F g (Fye< 1) it is
necessarythat the curve ®(F) havethe form shown schematically in Fig. 1 (solid portion), that is, it must
satisfy the following conditions:
® (Fy) =0, @ (F,) = 0, D (F) >0 22)

(Fo FF,),
The first of conditions (22) is satisfied automatically; for the third condition to be fulfilled it is neces-
sary that & (Fg) > 0. Calculation of the derivative gives
2—7 1

©(F) =2k (1 —Fz){'_'r'—aN+ab(1—F2 - 1fF02>+22:TaNln;:ﬁa}

2—x
Y

@ (Fo) = 2Fo (1 — FO?')[ aN —ab(1 — 1«‘02)-1]

From this it is evident that if the conditions
C—")1""aN>ab, 0 FoFoy, Fo,>=1—7/(2—17)abjaN (23)

are fulfilled, then the condition ®'(Fy) > 0 is satisfied. If y=1(2—7v) aN <gb, then there exists no value Fy<1,
for which &' (F) > 0; therefore, a solution for which (2—v)y~1aN < gb is without physical meaning, At first
glance the second root F, of the equation ®(F) =0 seems to coincide with the point F=1, as &(1) =0, How-
ever, examination of the derivative shows that

limp_,, @' (F) = ab >0

so that as F— 1, the function ®(F)— 0 through negative values, as indicated by the dashed curve in Fig, 1.
Therefore, when conditions (23) hold, a root F,, for which F, =F_ (Fgi< 1,necessarily exists, This implies
that when conditions (23) hold there exist periodic solutions that vary from F,at ¢ 0to E{F,. The value
F, is attained for some value of the argument ¢ =¢,, which represents a half-period that must be equated
to n/i, i.e.,
Fu(Fo)

(i=1,2,3..)

This condition can serve for the choice of the arbitrary constant F,. In practice it is inconvenient
to use this relationship; it is better to determine F, by integrating Eq. (15) numerically with the initial
conditions (19) and varying F, between the limits (23) until coincidence of the argument ¢, with one of the

values 7/i.is obtained.
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To illustrate what has been said above, a numerical integration of Eq, (15) was performed for the
value (2—v)y~1aN =50, which satisfies the first of conditions (23). The dependence of the half-period o
on the initial value F, that was obtained is shown in Fig. 2. The intersection points of the curve ¢ y(F,)
with the lines ¢ =m/i determine values of Fyj that ensure the required periodicity of the function F(p). On
the plot these points are denoted by small circles. ’

The functions F(¢), corresponding to the values Fyj, are represented in Fig, 3, The curves
are drawn for the half-period 0 =¢ =u/i, as the second half of a curve is symmetric with respect to the
point ¢ =7/i. According to relation (18), which in the present case (m =—3/2,n=1) resultsin the form £, 5
F(p) =const, the function F(p) determines the shape of the transverse cross section of the cloud. The
patterns obtained forthe functions F{p) shown in Fig. 3 are represented in Fig. 4. From these it is evident
that the greater the number of lobes, the more closely the shape of the transverse cross section approx-
imates a circle.

In conclusion the author thanks V. I. Khonichev for assistance with the numerical calculations,
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