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A se l f - s imi l a r  solution of the problem on the spreading in a magnetic field of a cloud of 
conducting gas, having the shape of a cyl inder  of nonci rcular  c ro s s  section, is constructed.  
The cyl indrical  surface of the gas is res t ra ined by a nonconducting sheath that spreads ac -  
cording to a p resc r ibed  law. The shape of the t r ansver se  c ros s  section of the cyl indrical  
cloud is determined from the solution. Cross  sections obtained for  a concrete  case are  
represented in graphic form.  

The cha rac te r  of the flows in many maguetohydrodynamic devices makes  it neces sa ry  to investigate 
two-dimensional  nonsteady motions in maguetogasdynamics .  A great  many papers  are devoted to theore t -  
ical discussions of s imi l a r  problems.  Under the assumption that the magnetic Reynolds number  R m and 
the magnetohydrodynamic interaction pa rame te r  are smal l , s tudies  have been made of the eddy cur ren ts  
generated in the gas behind the shock wave in the region of inhomogeneity of the external  magnetic field 
and of their  influence on the propagation speed of the shock wave [1] and on the braking of a p lasma cloud 
in a channel [2]. For  R m = ~o the behavior of a two-dimensional  Z-pinch with the formation of a plasma 
focus has been studied in [3] and the pa ramete r s  of an axial p lasma jet were obtained. 

In two-dimensional ,  as in one-dimensional ,  problems, i t  is important  to consider  finite values of the 
number  Rm, since in the f i rs t  place this number  is by no means small  in cer tain experimental  apparatus 
[4], and secondly, as has been shown in [5], even for flows having an R m that is initially small ,  the develop- 
ment of small  but finite perturbat ions in the conductivity can lead to a substantial r ea r rangement  of the 
flow with the formation of h igh- tempera ture  layers ,  and this resul ts  in an increase  in the effective value of 
the magnetic Reynolds number,  while the induced magnetic fields become sizeable. 

In the general  case such problems can obviously be investigated only by the application of numerica l  
methods,  but at the same time the need for  exact solutions remains .  

One of the best-known methods of obtaining exact solutions is the method of se l f - s imi l a r  solutions. 
Usually one considers  problems in whose original  formulation all unknown functions depend on only two 
independent var iables ,  and the introduction of a s e l f - s imi l a r  variable reduces the problem to the integration 
of ord inary  differential equations [6, 7]. 

In the case of nonsteady two-dimensional  problems of magnetogasdynamics  with three independent 
var iables  the possibil i ty of obtaining an exact solution of the se l f - s imi l a r  problem is not evident; therefore  
the construct ion of such a solution is of interest .  

In the present  paper,  we give an example of a s e l f - s imi l a r  solution of the problem for the case of 
two-dimensional  spreading of a cloud of conducting gas, contained in a nonconducting, mobile sheath. 

Suppose that we have a two-dimensional  cloud of conducting gas in the shape of a cyl inder  with gen- 
e r a to r s  paral le l  to the z axis, whose la tera l  surface is res t ra ined  by a nonconducting sheath. The c ross  
section of the cylinder in a plane z = const is some closed curve whose shape is to be found from the solu- 
tion. The entire sys tem is situated in an external  magnetic  field that has only a z-component .  
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Fig. 1 

At some instant  let the sheath s t a r t  to expand, r emain ing  geo-  
m e t r i c a l l y  s i m i l a r  in the shape of its c r o s s  sect ion,  while the s t rength  
of the ex te rna l  magnet ic  field begins to diminish.  The d isp lacement  
of the sheath r e su l t s  in motion of the gas,  in which c losed e l ec t r i c  
c u r r e n t s ,  lying in the planes z =const ,  a re  induced. The magnet ic  
field of the cu r r en t s  will be combined with the ex te rna l  magnet ic  field 
and will change it inside the cloud. The conduction cu r r en t s  will have 
no effect  on the field outside the cloud. The influence of d i sp lacement  
cu r r en t s  on the magnet ic  field outside the cloud is also negligibly 

sma l l  (since the veloci ty  with which the cloud sp reads  is sma l l  in compar i son  with the speed of 
lightT. 

After a certain time the characteristic dimension d of the cloud becomes substantially larger than 
the initial dimension d o while the strength H of the external field becomes smaller than H0. At this time 
the solution ceases to depend on Do, H0, and onthe initial conditions in the cloud (withthe exception of a small 
neighborhood of the origin). The solution that is obtained after the self-similar regime has become es- 
tablished will be cons t ruc ted  in this  paper .  

Using a cyl indr ica l  coordinate  s y s t e m  (r, ~ ,  z), we have 0 / 0 z  -=0 for  the case  under  cons idera t ion .  
Let  r .  be the r - coord ina te  of a boundary point of the cloud; accord ing  to our  st ipulation r .  = r .  @, tT. 

We seek  a solution with the veloci ty  field 

v ~ v ( r , t ) e r ,  "v(r , t )  = r f ' ( t ) / f ( t )  (17 

and with a magent ic  field t I = H  (r, go, t)e z. 

A motion with the veloci ty  field (1) e n s u r e s  the geome t r i ca l  s im i l a r i t y  of the boundary of the cloud 
(which is n e c e s s a r y  for  a s e l f - s i m i l a r  p roce s s )  at any t ime  t.  

The equations of magne togasdynamics  with (1) taken into account have the fo rm 

= _  + _ : ) ,  + : ) = o  P dF 
(27 

t 0 i v  r OH'~ 1 0 [ Vm OH\  
0//=0t tr 0r0 ( r v H ) + 7 ~  k m - ~ - r ) + - 7 - ~ - ~  [-7-~-~ --) 

(7) ( ) d P = 0 v m - -  ~ = f t P %  m 
d t  4 ~  ' 

where v m is the magnet ic  v i scos i ty ,  a is the conductivity,  and c is the speed of light. 

Equations (2) are  wri t ten  under  the assumpt ion  that  the medium is a pe r fec t  gas with constant  speci f ic  
bea ts ,  that v i scos i ty  and heat conductivity a re  absent ,  and that the e l ec t r i c a l  conductivity is re la ted  to the 
p r e s s u r e  P and the densi ty p through a power - law dependence.  In the energy  equation Joule heat  is not 
taken into cons idera t ion .  

Taking the t r a n s v e r s e  dimension of the cloud to be equal to ze ro  at the instant  t = 0, we shal l  a s sume  
that the law by which the sheath is displaced is given in the fo rm 

r,  = u %  ((p) (3) 

while the s t rength  of the ex te rna l  magnet ic  field v a r i e s  accord ing  to the law 

H,  (t) = A t% (47 

Here  ~b (go) is a d imens ion less  per iodic  function of the angle go, I and A to be de te rmined ,  [ / ] = c m .  sec-f l ,  
and [A] =gi /2 .  cm-1 /2 ,  sec-(1 + a  , a and fl are  d imens ion less  constants .  Moreover ,  let M 0 be the m a s s  gas 
occupying a unit length of the cyl indr ica l  cloud, [M0] = g .  cm -1. Thus,  accord ing  to [6], the de te rmin ing  
p a r a m e t e r s  of the p rob lem a re  

r, % t, A ,  4 ~ 2 / c  2, l,  Mo  ([4z~/c 2] =g-(~+m)cm ,~+~m-2"sec'2~+:) 

Forc~ = - 1 ,  fl = -  (2n +1) /2  (m - 1 )  the p rob lem is s e l f - s i m i l a r .  At the same t ime,  f rom the p a r a m e t e r s  r,  t, 
A, 4~r~/c 2, l ,  ]V[0, one can fo rm the single d imens ion less  quant i ty  

: r l - l t (~+:) /~(~-:)  (5) 
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which, according to (3), assumes  the following value at the outer  boundary of the cloud 

~. = ,  (~) (6) 
The des i red  solution will have the form 

v (r, t) = - - ,  2n + t r =- 2n__+_~t lt_(~+~)/W~_~)_~ 
Z (m-- 1) t 2 (m-- t) 

H ( r , % t ) =  ]fl-~At-~h(~, cp), p ( r ,  q),t) = A~t-~p(~, T) (7) 

p (r, t) = - ~  Pl (~) = - ~  t(~"+a(~-l)Po (~) 

The veloci ty  v sat isf ies  the requi red  boundary condition 

v (r, t) [ . . . .  (~,0 = Or./Ot 

and in the express ion  for  the density we omit the dependence on go, which is obvious f rom Eqs. (2). 

Inser t ion of (7) into (2) de termines  equations for the functions P0(O, h (~, go), p (~, go). At the same 
t ime the f i rs t  of Eqs.  (2) is sat isf ied identically,  while the fifth equation of (2) reduces  to the relat ionship 

7 = - - 2 ( m - - l ) / ( 2 n + l )  (8) 

where Y is the adiabatic exponent.  

The second, third,  and fourth equations of the sys tem (2) reduce to the following: 

Mo T--I ~ 0 
A-" V~ ~Oo(~) = % (p+h~),  ~ ( p + h  ~)=0  

i O [ Oh ] , 1 0 F -n -m Oh ] 2 - - T  Nh(~,(~)  
o~ .P%;'% - W  ~ --g---~4 [P oo W ] = 

{u ~,n ~,a,. ( Mo F )  
\ = c"-~. \-"~.1 / 

In addition to Eqs.  (9), (10), the requi red  solution must  sat isfy a boundary, condition on the  magnetic 
field 

H(r, % t)i,=~,(~,) = It ,  (t) 

which, f rom the second of (7), with account taken of (4), reduces  to the form 

h [~,  (~), ~] = (8 ~ ) ' / ~  

We seek a par t i cu la r  solution of Eqs.  (9), (10) of the form 

h (~, r = R (~)~F (+), p (~, +) = R ~ (~) [t - F ~ (+)l 

the functions R(~), P0(O, F (go) having to sat isfy,  according to (9), (10), the equations 

Mn T- - t  
b e~ (~)1' = A'---~ .r--'~-- ~Po (~) 

(9) 

(10) 

d [~n , (~ ) ]  ~ ~ , a [ r'(r ] 2 - . r N  
~R d~ [ R~npo-'--'--~-J (1__F2) " - - - - - - ~  -~ ~Tl'mpo m F(r d~ (t__'-'~-F"2) n ' " f  

the la t te r  of which is equivalent to the following: 

t d [ ~R' (~) ] b 
~R~'~(~)Po"~(~)=a' ~R(~) d~, R~'(~.)po'n(~) 

ab t d [ F'(r ] = a N 2 - - ~ :  
( t -7~ ' )  ~' + F (r ~r i ~ J  , "r 

(11) 

(12) 

(1.3) 

(14) 

(15) 

Here a, b are a r b i t r a r y  constants,  on which the res t r i c t ion  (17) is imposed. Solutions of Eqs.  (13), 
(14) have the form 

R(~) (~X ~ - t  ,~+-~m/~m+~)~Cm,1)/Cm+. ) (16) 

P0 (~) = aLCm+n) ( 2AM~ T --7 z l mm ~-nt/~-n/Cm+n) ~D'2Cn+')/(m+ni " 

These solutions sat isfy the second equation of (14) when 

ab ~ (m-- 1) (3m + 2n -- t) (17) 
(m + n)z 

It should be noted that solutions (16) were obtained under  the assumption that m u0, m + n r  The 
case m = 0  is re jec ted  because it lacks physical  in teres t ;  the case m + n = 0  is not considered for  the reason 
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that in this case compatibil i ty of Eqs. (13), (14) is achieved 
only for  n = - 1  (i.e., only when the conductivity is inversely  
proport ional  to the temperature) ,  which is also without phys-  
ical in teres t .  

With (12), (16) taken into account, the boundary con- 
dition (11) assumes  the form 

~(.~-l),(m§ (q~) F (~) ~ a-12(m*n)( Mo ~--  i m ~ )-m,'2(~+n) (Sg)_V~ (18) 
�9 2 A  V , - ~ - -  

This is, in fact, used to find ~. (~), i.e.,  for the de- 
terminat ion of the shape of the t r ansve r se  c ross  section of 
the cyl indrical  cloud, af ter  solution of the equation for F(~). 

We now turn to Eq. (15). From the form of solution 
(12) and the condition (18) it is evident that a solution of this 
equation has physical  meaning if it is periodic and is r e -  
s t r ic ted between the limits 0 ~F ~1. The period must  coincide 
with one of the values 2~r/i(i--1, 2,3, . . . ) ,  where, according to 
(18), i determines  the number  of "lobes" in the c ross  s ec -  

tion of the cloud. Denoting by F0(0 < F 0 < 1) the minimum value of F(cp), we can write the initial conditions 
for Eq. (15) in the form 

F (0) = Fo, F '  (0) = 0. (19)  

The value of F 0 is determined from the condition that the period of the function F(~) should coincide 
with 2~r/i. 

Equation (15) contains two constants,  ab and aN. The f irs t  of these constants is determined by con- 
dition (17), and for the values of m, n chosen below (20) it takes the value ab=35.  The second constant aN 
is a rb i t ra ry ,  and, as shown below, it sat isf ies  the condition ( 2 - y ) y  - l -  aN > ab. 

The constant aN is related to the magnetic Reynolds number .  As there are no length and velocity 
scales  in the problem under  consideration,  the number  R m can be calculated only in t e rms  of the run-  
ning pa rame te r s  (~, ~, t) = ~ P~ (~, % t) p'~ (~, % t), v (~, t), r (~, t ) of some fixed part icle .  It is found that 
for the solution obtained this number  does not depend on ~, t and is determined only by the pa rame te r  
of the part icle in question. In fact, insert ion of the solutions P, p, v, r into the express ion for  R m leads 
to the following result :  

R,n ~ 4 ~P~p'~vrc  -2 ~ aN (2 ~ F2)~. 

However, it is c lea r  that p rescr ib ing  aN is to a cer ta in  extent equivalent to prescr ib ing  the number  

R m �9 

Introducing the new function 

u ( F )  = ( i  - -  F~) ~ ' d ~  
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we can integrate  Eq. (15) once, with the resu l t  

u2 = 2 -- *; aN j l  (F) -- abJ~ (F) -[- D 

(jl  (F) = i 2FdF J2 (F) = I 2FdF 
(1 - -  F2)" ' ( t  - -  Fs)  2n / 

where D is an a r b i t r a r y  integrat ion constant.  The in tegra ls  JI(F) and J2(F) a s sume  different fo rms ,  depend- 
ing on the exponent n. 

In choosing n it mus t  be kept in mind that the constants  7,  m,  n mus t  sa t i s fy  condition (8), which, 
though r e s t r i c t i ng  the a r b i t r a r i n e s s  of these constants ,  neve r the le s s  leaves  the possibi l i ty  of cons ide r -  
ing physical ly  meaningful  ca ses .  For  example ,  we can take 

"f ----- 5/3, m = - -  3/2,  n = i ( 2 0 )  

With these  values  of m, n the dependence of the conductivity a on the t e m p e r a t u r e  and p r e s s u r e  a o~ 

T3/2 p J /2  desc r ibes  the actual dependence r a t h e r  w e l l  The re fo re ,  i t  is a s sumed  below tha t  n= 1 though the 
case  n r  Can be invest igated in a quite s i m i l a r  way. F r o m  n= 1 it  follows that 

u 2 = - -  ( 2  - -  ? )  7 - 1 a N  i n  ( t  - -  F 2)-ab( t -F~)  - ~  A - D  

the constant  O being de te rmined  f rom the condition u(F 0) =0, which follows f rom (19). 

As a resu l t  we obtained 

( ~" V = ~ (~) dr / 

r  aNln(t_Fo2)~_ab(t_Fo~.)_l  2--*;~ a N l n ( t _ F ~ ) _ a b ( t _ F 2 ) _ l }  

�9 (Fo) = 0 
For  the per iodic i ty  of the fimction F@) and a var ia t ion  between the l imi ts  F, <F VF. ,  (F .  < 1) it is 

n e c e s s a r y t h a t t h e c u r v e  r have the fo rm shown schemat ica l ly  in Fig. 1 (solid portion),  that is ,  it must  
sa t i s fy  the following conditions: 

(2D 

(22) (F0) = 0, r (F,)  = 0, $ (F) > 0 

(Fo < F < F.) 

The f i r s t  of conditions (22) is sa t i s f ied  automat ica l ly ;  for  the th i rd  condition to be fulfilled it is n e c e s -  
s a r y  that ~ '  (F 0) > 0. Calculat ion of the der iva t ive  gives 

, , ( F ) = 2 F ( t _ F S ) { _ ~ J _ a N §  ( i __F02) § 22 ~-*; t - - F  2 t aev m t---~0.z} 

(Fol = 2Fo (1 - -  F / )  [ 2 - -*;  a N  - -  ab (t - -  t;o')- ']  

From this it is evident  that if the conditions 

(2 --  T) T -1aN > ab, 0 < Fo < F0,, F0, ~ = 1 --  ";/(2 -- 1") ab/aN (23) 

a re  fulfilled, then the condition r  0) > 0 is sat isf ied.  If  T - I ( 2 - T )  aN < ab, then there exists no value F 0 < 1, 
for  which ~b'(F 0) > 0; therefore, a solution for  which ( 2 - 7 ) T - I n N  <ab is without physica l  meaning. At f i r s t  
glance the second root F ,  of the equation ~ ( F ) = 0  seems to coincide with the point F = I ,  as ~(1)=0.  H o w -  

e v e r ,  examinat ion  of the der iva t ive  shows that 

]imF~l ~'  (F) -= ab > 0 

so that as F ~  1, the function ~ ( F ) ~  0 through negative values ,  as indicated by the dashed curve in Fig. 1. 
There fo re ,  when conditions (23) hold, a root  F . ,  for  which F .  = F .  (F0)< 1 , nece s sa r i l y  ex is t s .  This implies  
that when conditions (23) hold there  ex is t  periodic solutions that  va ry  f rom F 0 at ~= 0 to F.(F0). The value 
F .  is at tained for  some value of the a rgument  ~ =~0, which r e p r e s e n t s  a ha l f -pe r iod  that mus t  be equated 
to 7r/i, i .e . ,  

F,(Fo) 
f ( i~t ,2 ,3 ,  ..) 

dF 

~o V ' ~ ( ~  - i  

This condition can se rve  for  the choice of the a r b i t r a r y  constant F 0. In p rac t i ce  it is inconvenient 
to use  this re lat ionship;  it is be t te r  to de te rmine  F 0 by integrat ing Eq. (15) numer ica l ly  with the initial 
conditions (19) and vary ing  F 0 between the l imi ts  (23) until coincidence of the a r ~ m e n t  ~P0 with one of the 
values  lr/iAs obtained. 
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To i l lus t ra te  what has been said above, a numer ica l  integrat ion of Eq. (15) was pe r fo rmed  for  the 
value (2-) ' ) ' / - ia iN =50, which sat isf ies  the f i r s t  of conditions (23). The dependence of the hal f -per iod  90 
on the initial value F 0 that was obtained is shown in Fig. 2. The in tersec t ion  points of the curve ~0(F0) 
with the lines (P0 =~/ i  de termine  values of F0i that ensure  the requi red  per iodic i ty  of the function F(go). On 
the plot these points are  denoted by smal l  c i r c l e s .  

The functions F(q~, corresponding to the values Foi , are  r ep resen ted  in Fig. 3. The curves  
are  drawn for  the ha l f -per iod  0 - ~  -<v/i,  as the second half  of a curve is symmet r i c  with respec t  to the 
point (p =~/ i .  According to re la t ion (18), which in the presen t  case (m = - 3 / 2 , n = 1 ) r e s u l t s  in the form ~. 5 
F(~p) =const ,  the function F(ga) de te rmines  the shape of the t r an sv e r se  c ross  section of the cloud. The 
pat terns  ob ta inedfor the  functions F(ga) shown in Fig. 3 are  r ep resen ted  in Fig. 4. F rom these it is evident 
that the g r e a t e r  the number  of lobes, the more  c losely  the shape of the t r a n s v e r s e  c ross  section approx-  
imates  a c i rc le .  

In conclusion the author  thanks V. I. Khonichev for  ass is tance with the numer ica l  calculat ions.  
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